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Abstract

New results are described for surface tension and for the wetting and filling phenomena on the triangular Ising lattice.

These are obtained by exact solution using the spectrum of the transfer matrix and by Monte Carlo simulation.
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1 Introduction

The phenomenon of filling, that is of wetting modified by grooving or pitting substrates, has been a subject of con-

siderable recent work [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], motivated by both potential practical applications and by what

has turned out to be an interesting new type of phase transition [13, 12]. In a typical situation, the region of parameter

space in which there is filling contains, and is larger than, the region of wetting. This supplements the tuning of wetting

effected by chemical means [14]. The key intellectual challenge is that interfaces between coexisting phases display

spatial fluctuations about their mean position which diverge with the system size. Thus, theories which neglect these

or restrict them by uncontrolled approximations should be treated with considerable caution. To date, there is just

one exactly solvable model starting from a molecular-level Hamiltonian [8] (the rectangular Ising Ferromagnet) which

displays such a filling transition. This Ising calculation complements those carried out for regular wetting [15, 16]; it

discusses both the thermodynamics of the transition, the exponent characterising divergence of the film thickness and

the contact angle (in an appropriately modified definition), which satisfies the modified Young’s Law. The thermody-

namics comes from a full evaluation of the canonical partition function. The transition may also be investigated in the

traditional, but possibly approximate way, from the intersection in parameter space of free-energy curves estimated for

interfaces either crossing the corner through the bulk or bound to the walls. This means we assume the basic geometri-

cal structure of interfaces and their change in the transition. Further, this estimation uses bulk angle-dependent surface

tensions and wall-binding incremental free-energies, which have to be calculated for the method to be useful. Clearly,

there are serious approximations: fluctuations which interpolate between the two basic configurations are ignored, as

are line and ‘corner’ tensions. It is important to note, though, that large fluctuations are not inhibited, since a proper

calculation of the surface tension, for instance, allows for them. What is not considered is that the interface might

’tunnel’ between the shortest path and that bound to the walls in order to decrease free energy. Further, the interface

might even follow a curved path.

Given these approximations, it is reassuring that the phase diagram is indeed recaptured correctly [8, 6]. Since

finding an exact solution toany wettingproblem is a lucky accident and the result of considerable labour, a different

approach is desirable. Such an approach could, for instance, involve either Monte-Carlo simulations [11, 9, 10] or

extending the free energy technique as outlined above. We do both in this paper, first by finding an exact solution for

wetting and surface tensions in the triangular lattice. This allows us to locate the filling phase transition line by the

free energy method and to check a conjecture for universal characteristic of the shift in boundary between wetting and

filling (this is exact in the free energy construction described above) [6]. The reader may well ask why the calculation

for the filling transition in the square lattice case [8] cannot just be repeated for the triangular lattice. The problem is

that form factorsare needed in the basis defined by eigenvectors of the transfer matrix for the triangular latticeon a

half line. Not even the eigenvectors are yet known in this case, so the rest of the argument is academic. This is why

we are advocating a critical extension of other techniques available.



2 Triangular Lattice Solution

This is the most natural two dimensional lattice to consider, from a packing point of view, but the spectrum of the

transfer matrix had not been obtained [17] in a convenient form for the analysis of the surface properties until now.

Thus, we encounter a Bogoliubov-Valatin transformation [18, 19] closely analogous to that in the square lattice case

[20]. As shown in Fig 1, if we have the spectrum of the(1,1)-direction transfer matrix (which is denotedT(1,1)(K1,K2))

[21], analogous results follow for the triangular lattice by bringing in the transfer operators for the horizontalK3 bonds,

denotedV2(K3). Thus the transfer matrix between the first and second row is

W(K1,K2) = V2(K3)
1
2 T(1,1)(K1,K2)V2(K3)

1
2 (1)

and the transfer matrix between the first and third row is

V = W(K1,K2)W†(K2,K1). (2)

With the usual decomposition into odd and even Fermion number subspaces, this can be written in canonical form as

V± = Λmax(±)exp{−∑
ω

λ(ω)G†(ω)G(ω)} (3)

with eiMω =∓1, ω ∈ (−π,π] and

G†(ω) = cosθ(ω)F†(ω)− i sinθ(ω)F(−ω) (4)

The transformation angle is given by

e2iθ(ω) =−eiω

[
(eiω−A4)(eiω−B−1

4 )

(eiω−A−1
4 )(eiω−B4)

] 1
2 (

B4
A4

) 1
2

(5)

with A4 = exp2(K∗
3 + (K+

3 )∗) ,B4 = exp2(K∗
3 − (K+

3 )∗) where∗ denotes the usual Onsager duality andK+
3 (and

mutatis mutandisK+
j ) being given by

cosh2(K+
3 )∗ = cosh2K1cosh2K2 +sinh2K1sinh2K2cosh2K∗

3 (6)

This is the star-triangle relationship in disguise [22]. The final result needed is

e−λ(ω) =

(
C−e−γ4(ω)

C−e+γ4(ω)

)(
sinh2K1 +e−iω sinh2K2

sinh2K2 +e−iω sinh2K1

)
(7)

with C = sinh2K1sinh2K2sinh2K+
3 /sinh2K3 andγ4(ω)≥ 0 with

coshγ4(ω) = cosh2K3cosh2K+
3 −sinh2K3sinh2K+

3 cosω (8)



This should be contrasted with the usual Onsagerγ function given by

coshγ(ω) = cosh2K∗
1 cosh2K3−sinh2K∗

1 sinh2K3cosω (9)

Note that ifK1 = K2 thenV =V† either by inspection of Fig 1 or by direct calculation. The similarity with the elements

of the Onsager hyperbolic triangle will turn out to be very useful, in particular the al Kashi formulae for such triangles;

it is not accidental but more detailed work to reveal it will be given elsewhere. Using the form of (5),(7) and (8), we

just reel in the results: firstly, the incremental free energyτp for a domain wall starting at(1,0) and ending at(s+1,0)

in an edge along the(1,0) direction in Fig 1 with surface fieldh is given by

τp =− lim
s→∞

1
s

log
( 1

2π

∫ 2π

0
eisω f (ω)dω

)
(10)

with

f (ω) = i tan(δ∗4/2)
eγ4(ω)−e−4K3w4

eγ4(ω)−w4
e2K3 (11)

whereδ∗4 = 2θ(ω)−ω+π from (5) andw4 is the wetting parameter given by

w4 = e2K3(cosh2K+
3 −sinh2K+

3 cosh2h) (12)

The formula forf (ω) in the rectangular case hasδ∗4(ω) replaced byδ∗(ω) andw4 replaced by

w = e2K3
cosh2K1−cosh2h

sinh2K1
(13)

The functionδ∗4(ω) is given by (see Fig 2)

sinh2K3sinhγ4(ω)cosδ∗4(ω) = cosh2K3coshγ4(ω)−cosh2K+
3 (14)

and
sinω

sinhγ4(ω)
=

sinδ∗4(ω)

sinh2K+
3

(15)

The functionf (ω) has simple poles whenγ4(ω) = logw4, for whichω =±iv0, mod2π where

v0 = iγ̂4(i logw4) (16)

and the function̂γ4 being given by (8) withK3 and K+
3 replaced by their dual values. Providedw4 > 1, this is

nearer the imaginary axis then the branch points oftan(δ∗4/2) areω = ±2i(K∗
3 − (K+

3 )∗),±2i(K∗
3 +(K+

3 )∗), which

characterise bulk on correlation function decay on the triangular lattice; thus this singularity is called the wetting pole

(more correctly, the partial-wetting pole). In this paper, we are interested only in the case,w4 > 1.

The analogy between (11) and (12) the square lattice case [15], which is recaptured precisely asK2→ 0, is striking.

The length scale normal to the substrate is

`⊥ =
1

λ(iv0)
(17)



Again, theK2→ 0 limit gives the usual square lattice result`⊥ = 1/γ̂(iv0) with the rectangular-lattice Onsager function

γ̂4 given by (8) withK3 replaced byK1 andK+
3 by K∗

2 .

For an interface with mean direction along(1,0) in Fig 1, the surface tension is

τ(1,0) = 2(K∗
3 − (K+

3 )∗) (18)

as given by Fisher and Ferdinand [23]. To analyse filling in the120◦ wedge, we also needτ(1,1). For brevity, we give

the result for the caseK j = K, j = 1,2,3. This is

τ(1,1) = λ(0) = 4K +2logsinh2K (19)

3 Thermodynamics for differing geometries

Once the thermodynamics of wetting is established, we can derive from it the filling conditions for the respective

geometries by simple but, in principal, approximate thermodynamical arguments following the methods described

earlier [6]. The idea is to compare the interfacial free energies of the non-filling and filling configurations at the

transition temperature by using a macroscopic filling condition. For the60◦ wedge this is particularly simple, as the

interface on average always follows a lattice direction, and we derive

τ(1,0) = 2τp (20)

for the isotropic lattice.

For the120◦ wedge the construction is not so simple as we must take into account the fact that the interface in the

filled state will, on average, cross the lattice at an angle ofπ
6 . The equivalent statement is hence

τ(1,1) = 2τp (21)

where the(1,0) and(1,1) directions are both shown in Fig 3 and theτ’s have been normalised appropriately.

As noted by Parryet al. [6] a useful quantity of interest, which is dependent only on the wedge opening angle2ψ
(see Fig 3) as we approach the triangular lattice bulk critical point,T4C , is the ratioR(ψ), defined by

R(ψ) = lim
T→T4C

hF

hW
(22)

where theh fields are the critical fields in the wetting and filling cases respectively. These fields are derived from the

thermodynamic conditions and in the square case the ratio and its subsequent limit can by derived analytically. In this

limit the lattice gains fluid isotropy andR(ψ) takes the following simple form

R(ψ) =
√

2sin
ψ
2

(23)



for which the value of(2+
√

(2))−
1
2 was confirmed in the square case. For the triangular cases we thus predict

R(π
6) = (

√
3− 1)/2 andR(π

3) = 2−
1
2 . In the triangular case the algebraic problems are more significant, and so a

symbolic computer solution is more appropriate (Mathematica). We implemented and solved the quartic equations

(20) and (21) forhF(T) and also the corresponding wetting equation,τ = τp for hW(T) and took the limit of equation

(22) resulting0.3660and0.7071for 60◦ and120◦ opening angles respectively. These values agree with (23) and thus

confirm the conjecture for the case being examined.

4 Numerics

The filling conditions of (20) and (21) presented in the previous section are based on a thermodynamical argument.

To test if this argument is reasonable, we perform Monte-Carlo simulations to get independent estimates for the filling

phase boundaries.

Defining a phase boundary for filling using conventional Monte-Carlo methods would be a daunting task because

one would be forced do a number of simulations with different surface fields and temperatures. Instead we use N-fold

implementation of the Wang-Landau sampling [24] introduced by Schulzet al. [25]. In Wang-Landau sampling, a

random walk in energy or any other parameter space (a point that will be exploited later) is performed to get estimates

for the density of states of the parameter in question. Schulzet al. successfully combined this algorithm with the

N-fold Monte-Carlo method.

Our simulated system is depicted in Fig 3 and it has following Hamiltonian:

H =−K
2 ∑

n.n.

σiσ j −h ∑
i∈W1

σi +h ∑
i∈W2

σi (24)

where the first sum is over nearest neighbours,h represents the strength of the surface field and spins on the boundary

belong either to setW1 or to setW2. We assign the boundary spins depending on whether we study 60◦ or 120◦ opening

angle. Furthermore we consider only the isotropic case, i.e. with coupling strengthK = K1 = K2 = K3.

After performing simulation with the Hamiltonian above, we have an estimate for the relative density of states

g(E(h)) for one value of the surface field. This function can be made absolute by using the knowledge of the degener-

acy of the groundstate. Even thoughg(E(h)) is indeed a desirable quantity, as it gives an opportunity to find the filling

transition temperatureTF for the fieldh, we still face the problem of defining the transition point for different fields.

To overcome this problem, instead of calculatingg(E(h)) for severalh’s, we will consider simulatingg(Eb,ns), where

Eb is the bulk energy andns is the number of surface spins parallel to the boundary field minus the number of surface

spins anti-parallel to the boundary field. We then calculateg(E(h)) for anyh using:

g(E(h)) = ∑
ns

∑
Eb

g(Eb,ns)δ(Eb +nsh−E(h)) (25)

and hence quantities like the specific heat are accessible. It is perhaps worthwhile to explain why turning a one

dimensional problem (g(E(h))) in to a two dimensional one (g(Eb,ns)) is useful. When a filling fieldh is introduced the



smooth and monotonous functiong(E) decomposes into a ‘spiky’ function and the number of energy levels increases

by a factor∼ L, the dimension of the system. The computing time used by the algorithm is proportional to the levels

it has to visit. Even though the time for two dimensional distributiong(Eb,ns) scales quadratically it is still faster to

simulate than the original one dimensional problem, furthermore it is indeed a smooth surface, a fact that seems to

reduce errors during the simulation. To enlighten this further, we perform a post simulation analysis for the case of

40×40 lattice. In this caseg(Eb,ns) for the 120◦ opening angle has altogether 357923 levels and the set ofg(E(h))’s,

h = 0.05,0.10, . . . ,1.95,2.00 has 1156202 levels. Thus simulatingg(Eb,ns) is about3 times faster. Furthermore, by

exploiting the obvious symmetry ofg(Eb,ns) with respect to the energy axis, an additional factor of two can be saved

from the computing time. So we are transforming a difficult (in the computational sense) one dimensional problem to

an easier two dimensional problem. This reformulation pays off if the interest is on the system’s behaviour withmany

differenth’s, as is the case if we want to define filling phase boundaries.

As an indicator of the filling transition in the 60◦ (resp.120◦) case we use the peak in the difference between specific

heats of two systems, one withh= 1 (resp.2) field and one with filling fieldh< 1 (resp.2), i.e. |C(T)1(resp.2)−C(T)h|.
In figure Fig 5 one such set of peaks is depicted for 60◦ opening angle. The parameters relevant to the simulations are

collected in table 1. Even though no finite-size scaling has been done, the phase boundary extracted from simulations

gives reasonably good agreement with the exact phase boundary, as can be seen in Fig 4. Even small systems (30×
30) give accurate results with large filling fields as was also the case in analogous studies with square Ising lattices

corresponding 90◦ angles [6, 10]. Simulation results deviate systematically from the exact phase boundary when field

h→ 0, i.e. TF → T∆
C . This is a typical finite-size effect and as simulation results with40× 40 system show, this

deviation will get smaller when system size is increased. Full treatment of the finite-size effects will be considered

elsewhere but for the moment weconfirm the applicability of the thermodynamical argumentfor the filling condition

with the numerical agreement between simulated and exact phase boundaries with large enough filling fields.

5 Conclusions

In summary, we have outlined the exact wetting behaviour of a two dimensional Ising Ferromagnet defined on a

triangular lattice. By constructing wedges with opening angles of both60◦ and120◦ we have established new results,

which are almost certainly exact, for the filling behaviour. These agree with our Monte-Carlo simulations, and with

certain prior conjectures on the universality of transition line shift between filling and wetting at bulk criticality. The

form of our triangular lattice calculation implies that finite-size results should be available using existing methods for

the surface tension and even for the wetting transition.
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